Hyperoxia causes maturation-dependent cell death in the developing white matter.

نویسندگان

  • Bettina Gerstner
  • Tara M DeSilva
  • Kerstin Genz
  • Amy Armstrong
  • Felix Brehmer
  • Rachael L Neve
  • Ursula Felderhoff-Mueser
  • Joseph J Volpe
  • Paul A Rosenberg
چکیده

Periventricular leukomalacia is the predominant injury in the preterm infant leading to cerebral palsy. Oxygen exposure may be an additional cause of brain injury in these infants. In this study, we investigated pathways of maturation-dependent oligodendrocyte (OL) death induced by hyperoxia in vitro and in vivo. Developing and mature OLs were subjected to 80% oxygen (0-24 h). Lactate dehydrogenase (LDH) assay was used to assess cell viability. Furthermore, 3-, 6-, and 10-d-old rat pups were subjected to 80% oxygen (24 h), and their brains were processed for myelin basic protein staining. Significant cell death was detected after 6-24 h incubation in 80% oxygen in pre-OLs (O4+,O1-), but not in mature OLs (MBP+). Cell death was executed by a caspase-dependent apoptotic pathway and could be blocked by the pan-caspase inhibitor zVAD-fmk. Overexpression of BCL2 (Homo sapiens B-cell chronic lymphocytic leukemia/lymphoma 2) significantly reduced apoptosis. Accumulation of superoxide and generation of reactive oxygen species (ROS) were detected after 2 h of oxygen exposure. Lipoxygenase inhibitors 2,3,5-trimethyl-6-(12-hydroxy-5-10-dodecadiynyl-1,4-benzoquinone and N-benzyl-N-hydroxy-5-phenylpentamide fully protected the cells from oxidative injury. Overexpression of superoxide dismutase (SOD1) dramatically increased injury to pre-OLs but not to mature OLs. We extended these studies by testing the effects of hyperoxia on neonatal white matter. Postnatal day 3 (P3) and P6 rats, but not P10 pups, showed bilateral reduction in MBP (myelin basic protein) expression with 24 h exposure to 80% oxygen. Hyperoxia causes oxidative stress and triggers maturation-dependent apoptosis in pre-OLs, which involves the generation of ROS and caspase activation, and leads to white matter injury in the neonatal rat brain. These observations may be relevant to white matter injury observed in premature infants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of the cerebellar white matter is impaired by postnatal hyperoxia and protected by minocycline

Brain injury of preterm infants has widely been ascribed to the cerebrum, but recent studies demonstrate that injury of the cerebellum occurs, too [1]. Causes of cerebellar pathologies in preterm infants and ways of protection are underinvestigated. In general, perinatal infection/inflammation, hypocarbia, and hyperoxia are factors associated with brain damage in preterm infants [1,2]. We inves...

متن کامل

Interaction of Inflammation and Hyperoxia in a Rat Model of Neonatal White Matter Damage

Intrauterine infection and inflammation are major reasons for preterm birth. The switch from placenta-mediated to lung-mediated oxygen supply during birth is associated with a sudden rise of tissue oxygen tension that amounts to relative hyperoxia in preterm infants. Both infection/inflammation and hyperoxia have been shown to be involved in brain injury of preterm infants. Hypothesizing that t...

متن کامل

Fingolimod protects against neonatal white matter damage and long-term cognitive deficits caused by hyperoxia

Cerebral white matter injury is a leading cause of adverse neurodevelopmental outcome in prematurely born infants involving cognitive deficits in later life. Despite increasing knowledge about the pathophysiology of perinatal brain injury, therapeutic options are limited. In the adult demyelinating disease multiple sclerosis the sphingosine-1-phosphate (S1P) receptor modulating substance fingol...

متن کامل

Cellular, Structural and Functional Characterization of Hyperoxia-induced White Matter Injury in the Developing Brain

Diffuse white matter injury (DWMI) is frequently associated with impaired neurological development in pre-mature infants. To characterize the cellular, structural and functional basis of hyperoxia-induced DWMI, the cellular changes in the white matter (WM) were first characterized using mice exposed to 48 hours of 80% oxygen from postnatal day 6 (P6) to postnatal day 8 (P8). Myelin basic protei...

متن کامل

Cellular changes underlying hyperoxia-induced delay of white matter development.

Impaired neurological development in premature infants frequently arises from periventricular white matter injury (PWMI), a condition associated with myelination abnormalities. Recently, exposure to hyperoxia was reported to disrupt myelin formation in neonatal rats. To identify the causes of hyperoxia-induced PWMI, we characterized cellular changes in the white matter (WM) using neonatal wild-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 28 5  شماره 

صفحات  -

تاریخ انتشار 2008